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Phase sensitive parametric amplification of optical vortex beams
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Abstract. Optical vortex beams with different topological charges are amplified in a travelling wave phase
sensitive parametric interaction. Amplified beams observed either in the near field or in the far field domains
exhibit patterns that depend on the relative phase between the pump and the vortex beams. Experimental
results are compatible with the conservation of orbital angular momentum of the input beam whatever
phase matching conditions.

PACS. 42.65.Yj Optical parametric oscillators and amplifiers – 41.85.Ct Beam shaping, beam splitting

1 Introduction

While optical tweezers technologies become mature and
relevant for some applications like light-driven microma-
chines [1] and optical manipulation of particles [2], gen-
eration and propagation of optical vortex (OV) beams in
non linear media and properties of optical vortex beams
involved in non linear interactions experience a growing in-
terest during the last years. While OV is usually obtained
in a linear regime with passive optical elements, χ(2) non
linear media can also be used to generate beams with
orbital angular momentum (OAM) either in a traveling
wave parametric optical amplifier (OPA) [3] or in an opti-
cal parametric oscillator (OPO) [4]. Soliton-propagation
of OV in various non linear media [5–9], conservation
or transfer of the OAM in up or down conversion [10–
12] and simultaneous frequency up-conversion and beam
shaping of optical tweezers in second harmonic (SH) in-
teraction [13] seriously enlarge perspectives for future
promising applications of OV.

This paper deals with the experimental parametric am-
plification of OV in a degenerate type 1 OPA. Since it has
been proved that OAM is transferred to the idler wave in
a type 2 OPA when either the pump or the signal beams
are OV [12], sensitivity to the relative phase between the
pump and the signal beams in a degenerate type 1 OPA
[14,15] also involves reshaping of OV carried by the sig-
nal beam like in a seeded SH interaction [13]. Indeed, in
a degenerate type 1 OPA, the amplification gain in the
transverse plane depends on the pump beam profile as
well as the relative phase between interacting beams. It
leads to amplification or de-amplification that reshapes
the signal beam in its transverse plane. Then, new vari-
ous patterns are obtained depending on phase matching
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Fig. 1. (Color online) Experimental set-up. L1, L2 and L3:
convergent lenses. D1, D2: dichroic mirrors (Tmax at 527.5 nm
and Rmax at 263.75 nm). TEM00 Gaussian beam illuminates an
amplitude computed hologram. The diffraction order carrying
an orbital angular momentum is selected with a spatial filter.
The collimated vortex beam is amplified in a type 1 BBO crys-
tal and imaged onto a CCD camera. Wave vectors describe a
non collinear phase matched interaction between pump, signal
and idler waves.

condition, topological charge of the vortex and wave front
of the pump beam.

2 Experimental results

Figure 1 sketches the experimental set-up. The optical
vortex is prepared by illuminating a computed amplitude
hologram with a pulsed Gaussian beam of 1 ps time du-
ration at λs = 527.5nm delivered by a frequency doubled
Q-switch mode-locked Nd:glass laser (Twinkle, Light Con-
version Inc.). The diffracted light is focused and spatially
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Fig. 2. Images of non amplified vortex beams with topological
charges ms = 1, 2, 3, 4.

filtered in order to select the diffraction order that gives
a Laguerre-Gauss beam carrying a topological charge ms.
The collimated vortex beam (i.e. the signal) is amplified
in a 4mm long type 1 BBO crystal by a pump beam at
λp = 263.75nm corresponding to the 4th harmonic of the
laser (at the degeneracy 2λp = λs). The size of the pump
beam is enlarged with a telescope to ensure an uniform
amplification gain in the whole transverse section of the
crystal. Then, near field of the vortex beam is observed
by imaging the input face of the crystal onto a single-shot
CCD camera. Far field is observed by placing the CCD
camera onto the focal plane of the lens L3.

Figure 2 represents pictures of non amplified vortices
with topological charges ms = 1, 2, 3, 4 obtained with
different holograms. For ms = 1, the diameter of the dark
core of the vortex is about 100 µm.

In a degenerate type 1 OPA, the intensity of the am-
plified beam detected on the CCD camera results from the
coherent superposition of the signal and the idler waves.
Lets assume that the amplitude of the pump plane wave is
constant in the transverse plane. In the undepleted pump
approximation, when no idler wave is present at the crys-
tal input, amplitudes of the output signal and idler waves
are given by [14]:{

Aout
s =

(
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2b sinh(bL)
)
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s

Aout
i = −i g
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where Ain
s (−→r ) = A0(−→r )ei∆φ(−→r ) is the amplitude of the

input vortex beam and ∆φ(−→r ) = φs(−→r ) − φp(−→r ) cor-
responds to the relative phase in the transverse plane
between the pump and the signal waves at the crys-
tal input. With g related to the pump amplitude and
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tal length. For perfect phase matching (∆k = 0), equa-
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where G is the amplification gain. In the high gain regime
(G � 1), coherent superposition of the signal and idler
waves leads to an amplitude of the output beam in the
transverse plane given by:

Aout(−→r ) = Aout
s ei−→q0·−→r + Aout

i e−i−→q0·−→r

� 2
√
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(3)

Intensity is:

Iout
OV (−→r ) � 2GIin

OV (−→r ) × (1 − sin [2∆φ + 2−→q0 · −→r ]) , (4)

where Iin
OV is intensity of OV at the crystal input. −→q0 ·−→r de-

notes the influence of a collinear or a non collinear scheme
on the process (see Fig. 1). In a collinear scheme where
−→q0 =

−→
0 , the amplification process depends only on the

relative phase ∆φ. When ∆φ = −π
4 modulo π, output

intensity is Iout
OV � 4GIin

OV , and corresponds to amplifica-
tion of the signal with a maximum gain. When ∆φ = +π

4

modulo π, intensity is Iout
OV � 0. Then intensity of the out-

put beam is modulated according to the variation of the
relative phase ∆Φ in the transverse plane. When −→q0 =

−→
0 ,

equation (3) shows that phase in the transverse plane of
the amplified beam is constant and is respectively equal
to −π

4 in areas where cos(∆Φ+ π
4 ) > 0 and to 3π

4 in areas
where cos(∆Φ + π

4 ) < 0. It corresponds to a π phase shift
between amplified areas.

In the high gain regime, equation (3) presupposes that
phase singularity no more exists in the amplified beam
and that could lead to the assumption that “degenerate
collinear OPA destroys the vortex” [11] and suggests an
apparent paradox of non-conservation of angular momen-
tum in spontaneous parametric down conversion [10]. But
if we consider the exact calculation of the total angular
momentum of the output beam which results from the
superposition of two coaxial singular beams of opposite
charges [19]:

Lout
z = Lout

zs + Lout
zi ∝

∫ ∫
{ms|Aout

s |2 + mi|Aout
i |2}d2−→r

(5)
where Lout

zs and Lout
zi are angular momentum of the output

signal and idler beams and ms and mi are topological
charges associated to these beams. Since mi = −ms [12]
and by considering equations (1), it leads to:

Lout
z ∝

∫ ∫
ms|Ain

s |2d2−→r ≡ Lin
zs (6)

whatever the amplification gain, amplitude of the phase
mismatch and amplitude of −→q0 . It means that total an-
gular momentum carried by the output beam in the near
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Fig. 3. Flower-like patterns of the amplified vortex beams
obtained with a collinear phase-matched interaction and with
a pump plane wave. The number N of petals is connected to
the topological charge m of the vortex by N = 2m.

field for collinear or non collinear, phase matched or phase
mismatched interactions is equal to the total angular mo-
mentum of the input signal beam and proves that angular
momentum of the signal is always conserved in optical
parametric interaction whatever phase matching condi-
tions.

Figure 3 shows the amplified OV beams when the
pump beam is a plane wave. Flower-like patterns are ob-
tained. Indeed, the relative phase is given by:

∆φ(−→r ) = msθ(−→r ) + θ0, (7)

where θ(−→r ) is the azimuth angle and θ0 is the mean value
of the relative phase in the transverse plane. Hence, ampli-
fied OV exhibit “petals” centered on azimuth angles where
∆φ(−→r ) = −π

4 modulo π. The number N of petals is con-
nected to the charge ms of the input vortex by N = 2|ms|.
From one laser shot to another, rotation of flower-like pat-
terns is observed. This rotation is due to the shot-to-shot
fluctuation of the mean value of the relative phase θ0 be-
tween the pump and the signal beams.

Figure 4 shows interference patterns obtained with an
amplified OV beam with a topological charge ms = 1 in a
collinear interaction. In a high gain regime, when perfect
phase matching occurs, Figure 4a shows continuous fringes
between the two amplified petals with no phase disloca-
tion and the π phase shift between the amplified areas is
revealed by the spatial shift of fringes between the am-
plified areas. Interference pattern suggests that no more
phase singularity exists in the amplified output beam. Ac-
tually, in high gain regime, interference contribution of the
remaining input phase singularity in the amplified output
field is negligible (see Eq. (4)). In Figure 4b amplification
gain is reduced by introducing a small phase mismatch.
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Fig. 4. (Color online) Experimental interference patterns of
amplified OV with charge ms = 1 for perfectly phase matched
(a) and mismatched (b) collinear interaction. Numerical sim-
ulations of interference patterns and phase maps of amplified
OV for perfectly phase matched (c, e) and mismatched (d, f)
collinear interactions.

Then, contribution of the remaining input phase singu-
larity in the interference pattern becomes significant and
can be observed with a good contrast. Experimental re-
sults can be compared to numerical simulations presented
by Figures 4c and 4d. When origin of phase is taken along
the horizontal axis, amplified areas are in the azimuthal
directions −π

4 and 3π
4 for perfect phase matching. When

phase mismatch occurs, constant additional phase related
to the phase mismatch amplitude changes phase origin
that induces rotation of amplified areas (Fig. 4d). Fig-
ures 4e and 4f show the corresponding calculated phase
maps of the amplified OV. Figure 4e clearly shows the π
phase shift between amplified areas revealed by the inter-
ferogram. In this case remaining input phase singularity
can not be observed. When phase mismatch occurs, phase
map (Fig. 4f) shows that input phase singularity is re-
trieved.

For a pump wave with a spherical wavefront, the
expression of the relative phase becomes for a collinear
interaction:

∆φ(−→r ) = msθ(−→r ) + θ0 − 2π

λp

r2

Rp
(8)

where λp is the wavelength and Rp the wavefront curva-
ture radius of the pump wave at the input of the crys-
tal. For example, points in the transverse plane for which
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Fig. 5. Spiral patterns of the amplified vortex beams obtained
with a collinear phase-matched interaction and a spherical
pump wave.

∆φ = 0 correspond to an isophasic curve that obeys to the
equation r2 = λRp

2π (msθ + θ0). It corresponds to the equa-
tion of a spiral. Figure 5 presents experimental images of
OV amplified by a spherical pump wave. Petals in the pre-
vious experimental scheme where the pump was a plane
wave become spirals where bright fringes correspond to
the isophasic lines ∆φ = −π

4 modulo π. Patterns in Fig-
ure 5 are analogous to patterns observed when an optical
vortex beam interfere with a spherical wave [16] but here,
the number of arms in the spirals is twice the vortices
charge.

Another kind of patterns can be obtained for a non
collinear interaction between the signal and a pump plane
wave (−→q0 �= 0). Then equation (4) leads to patterns where
the intensity of amplified OV beams is modulated by inter-
ference fringes showing a topological defect characteristic
of phase singularities.

Figure 6 presents images of amplified OV beams ob-
tained with a non collinear interaction and a pump plane
wave. Orientation and periodicity of interference fringes
depend on the direction and the amplitude of −→q0 (see
Eq. (4)). Fringes patterns are connected to topological
charges of the different input beams and are analogous
to interference patterns observed when two vortices of op-
posite charges interfere [17].

When amplified vortex beams are observed in the far
field domain (Fourier plane) analog patterns are observed
for perfectly phase matched collinear interaction. Petals or
spirals are observed when the pump beam is respectively
a plane (Fig. 7a) and a spherical (Fig. 7b) wave.

When perfectly phase matched non collinear interac-
tion is considered in the high gain regime (−→q0 �= 0, G � 1),
amplitude of the output beam can be expressed in the far

ms = 1 ms = 2

ms = 4ms = 3

Fig. 6. Patterns of amplified vortex beams obtained in a non
collinear phase-matched interaction with a pump plane wave.

(a) (b)

Fig. 7. Far field patterns of amplified vortex beams with
ms = 1 for collinear phase matched interaction with a pump
plane wave (a) or spherical wave (b).

field like:

Ãout(−→q ) =
√

G̃(−→q )Ãin
s (−→q −−→q0)

− i

√
G̃(−→q ) − 1Ãin∗

s (−→q + −→q0), (9)

where G̃(−→q ) is the amplification transfer function in the
spatial frequencies domain [18] and Ãin

s (−→q ) is the far field
amplitude of the input vortex beam. It gives two separated
vortices of opposite charge respectively centered on spatial
frequencies +−→q0 and −−→q0 .

Figure 8a shows the interferometry pattern of an am-
plified vortex beam (ms = 1) observed in the far field for
a non collinear phase matched interaction. Fringes clearly
exhibit the opposite charges of the signal and the idler
beams. While in the near field we define OAM around the
propagation axis; in the far field, we calculate OAM car-
ried by each beam around the spatial frequencies +−→q0 and
−−→q0 over areas that include only one beam. If we suppose
that the amplification gain is a constant in the limit of the
spatial frequencies bandwidth of the amplification trans-
fer function [18] (G̃(−→q ) � G), then amplified signal and
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(a) (b)

Fig. 8. Experimental result (a) and numerical simulation (b)
of far field pattern of amplified vortex beams with ms = 1
for a non collinear phase matched interaction. Interferometric
technique reveals the opposite OAM carried by the signal and
the idler and additional phase singularities of opposite sign can
be observed between the colliding beams.

idler beams carry respectively a total angular momentum:{
Lout

zs = GLin
zs

Lout
zi = −(G − 1)Lin

zs
. (10)

In the near field corresponding pattern (Fig. 6, ms = 1)
signal and idler are indistinguishable and total OAM car-
ried by the amplified beam is equal to the total OAM of
the input beam and do not depend on −→q0 (see Eq. (6))
but in the far field domain, OAM carried by the output
signal beam is amplified. When the transverse component−→q0 is tuned (i.e. changing the propagation direction of the
signal beam with respect to the pump one), amplified sig-
nal and idler vortices move symmetrically to each other
around the zero spatial frequency associated to the direc-
tion of the pump beam. When −→q0 tends to zero, signal and
idler vortices collide and analog phenomena related in ref-
erence [20] are observed: interferogram reveals additional
phase singularities of opposite sign between the colliding
beams. Figure 8b shows the corresponding numerical sim-
ulation where additional phase singularities are clearly ex-
hibited.

3 Conclusion

In conclusion, we experimentally performed the paramet-
ric phase sensitive amplification in a degenerate type 1
crystal of optical vortex beams with different topological
charges in the high gain regime. Various patterns corre-
sponding to the interference between the amplified signal
and the idler waves have been observed with respect to

experimental conditions either in the near field or in the
far field domains. Flower-like and spiral patterns are ob-
tained in both domains for collinear interactions when the
pump beam is respectively a plane or a spherical wave.
The number of petals or spirals in patterns is connected
to the charges of vortices and correspond to isophasic lines
in the transverse plane where relative phase between the
pump and the signal waves is equal to −π

4 modulo π.
Results of phase analysis in near field of the amplified
output beam by interferometric technique are compati-
ble with the conservation of the total OAM in degenerate
type 1 parametric interaction whatever phase matching
conditions.
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